๐Ÿ”Ž Search

All Posts

  • Published on
    ๐Ÿ› PROJECT | Some debate on Young's 3A on Beijing olympics

    ๐Ÿ› PROJECT | Some debate on Young's 3A on Beijing olympics

    According to You Young's short program results at the Beijing Olympics, the 3A (triple axel) seems to have been marked downgrade as follows. In figure skating, all jumps are marked as follows: 'graded, under rotated, down grade'. Down below is an image of its mark: graded, down grade...
  • Published on
    ๋Œ€ํ•™์›์ผ์ง€ | ์–ด์ฉŒ๋‹ค๊ฐ€ ์„์‚ฌ 4ํŽธ

    ๋Œ€ํ•™์›์ผ์ง€ | ์–ด์ฉŒ๋‹ค๊ฐ€ ์„์‚ฌ 4ํŽธ

    1๊ธฐ๊ฐ€ ๊ฑฐ์˜ 1๋‹ฌ๋„ ์•ˆ๋‚จ์•˜๋‹ค! 2๊ธฐ๊ฐ€ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ์ด ํฌ์ŠคํŒ…์„ ๋๋‚ด๊ณ  ์‹ถ์—ˆ๋Š”๋ฐ, ์–ด์ฉŒ๋‹ค๊ฐ€ ์‹œ๊ฐ„์ด ๋‹ค ๊ฐ„ ๊ฒƒ ๊ฐ™๋‹ค. ์˜ค๋Š˜์€ ๋Œ€ํ•™์› ๋ฉด์ ‘๊ณผ ์ฒซ ์ถœ๊ทผ, ํ•„์š”ํ•œ ๊ฒƒ๋“ค์— ๋Œ€ํ•ด์„œ ๋‚จ๊ธฐ๊ณ  1๊ธฐ ํฌ์ŠคํŒ…์„ ๋๋‚ด๋ ค๊ณ  ํ•œ๋‹ค. ๋Œ€ํ•™์› ์ž…์‹œ๋Š” ๋‚ด๊ฐ€ ์กธ์—… ํ›„์—๋„ ๊ณ„์† ๋งคํ•™๊ธฐ๋งˆ๋‹ค ํ•˜๋ฏ€๋กœ ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ๋Š” ๋„์›€์ด ๋˜์—ˆ์Œ ํ•œ๋‹ค.
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Reinforcement Learning

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Reinforcement Learning

    ์ธ๊ณต์ง€๋Šฅ ๋ถ„์•ผ์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹(๊ธฐ๊ณ„ํ•™์Šต)์€ ๋‹ค๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ† ๋Œ€๋กœ ์ปดํ“จํ„ฐ๊ฐ€ ํ•™์Šต์„ ํ•˜๊ฒŒ ๋˜๋Š”๋ฐ, ์ปดํ“จํ„ฐ๊ฐ€ ํ•˜๋Š” ์ž‘์—…์€ ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค. ํ‘œํ˜„(representation): ๋ฐ์ดํ„ฐ ํ‘œํ˜„, ์ผ๋ฐ˜ํ™”(generalization): ์ฃผ์–ด์ง€์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ํ•™์Šต ์ข…๋ฅ˜๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ์ฒ˜์Œ ๋ฐฐ์šธ ๋•Œ...
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Decision Tree

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Decision Tree

    ํฐ ๋ฒ”์ฃผ ์ฆ‰ heterogenous group์„ ์ž‘์€ homogeneous(๋™์ผํ•œ ๋ชฉํ‘œ ๊ฐ’)๋กœ ๋‚˜๋‰œ๋‹ค. ์ด ๋•Œ ๋‚˜๋‰  ๋•Œ๋Š” best split rule์— ๋”ฐ๋ผ ๋‚˜๋‰˜๊ฒŒ ๋˜๋Š”๋ฐ, ๊ธฐ์ค€์€ ๋‚˜๋ˆ„๋Š”๋ฐ ์žˆ์–ด์„œ ์–ผ๋งˆ๋‚˜ ๋‚˜๋‰œ ๊ฐ’๋“ค์ด ํ•œ ๋ชฉํ‘œ๊ฐ’๋งŒ์œผ๋กœ ๋ถ„๋ฅ˜๋˜์—ˆ๋Š”์ง€(purity)์ด๋‹ค.
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Clustering

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Clustering

    KNN์—์„œ ๋ฐฐ์šด ๋ฐ”์™€ ๊ฐ™์ด ๋น„์Šทํ•œ ๊ฐœ์ฒด๋ฅผ ๋ฌถ์–ด์„œ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋Œ€ํ‘œ์ ์ธ Unsupervised learning์˜ ํ˜•ํƒœ๋กœ, labed๋œ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์š”์—†๋Š” ํ•™์Šต ๋ฐฉ๋ฒ•์ด๋‹ค. ํด๋Ÿฌ์Šคํ„ฐ๋ง์€ ๋ณดํ†ต ๊ฒ€์ƒ‰ ์—”์ง„์— ํ™œ์šฉ๋˜๋Š”๋ฐ, ์œ ์‚ฌํ•œ ๋‹จ์–ด๊ฐ€ ์ถœํ˜„์ด ๊ธฐ๋Œ€๋˜๋Š” ๊ฒ€์ƒ‰๋œ ๋ฌธ์„œ๋“ค๋ผ๋ฆฌ ๊ฐ™์€ ํด๋Ÿฌ์Šคํ„ฐ๋กœ ๋ฌถ์ด๊ฒŒ ๋œ๋‹ค.
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Classification - KNN

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Classification - KNN

    KNN์€ K Nearest Neighbor์˜ ์ค€๋ง๋กœ ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ ์•Œ์•„๋ณผ ๋ฐฉ๋ฒ•์€ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ์ƒ ๊ธฐ์ค€์—์„œ ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ๋ฐ์ดํ„ฐ K๊ฐœ๋ฅผ ์ž์‹ ๊ณผ ๊ฐ™์€ ํ•ญ๋ชฉ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ถ„๋ฅ˜ํ•  ๋•Œ๋Š” euclidean ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฑฐ๋ฆฌ ๋ฐ˜๊ฒฝ ๋‚ด ์œ ๋ฌด๋กœ ํŒ๋‹จํ•˜๊ฒŒ ๋œ๋‹ค. ์•„๋ž˜๋Š” ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ• ์ค‘ ๋‘ ๊ฐ€์ง€๋ฅผ ์†Œ๊ฐœํ•œ๋‹ค.
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Constraint Satisfaction Problem

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Constraint Satisfaction Problem

    ๊ธฐ์กด์—๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ์ƒํƒœ๊ฐ€ ์•Œ ์ˆ˜ ์—†์—ˆ๋˜ ์ƒํƒœ(black box)์˜€๋‹ค๋ฉด, ์•ž์œผ๋กœ ํ•ด๊ฒฐํ•  ๋ฌธ์ œ๋“ค์€ ๊ณต์—ญ(domain) D ๋‚ด์—์„œ ์ƒํƒœ๊ฐ€ ์ •์˜ ๋œ๋‹ค. ์ด ๋•Œ ๋ชฉํ‘œ์— ๋Œ€ํ•œ ๋น„์šฉ์€ ๋ฌธ์ œ ์˜์—ญ์œผ๋กœ ํ•œ์ •๋œ(domain-specific) heuristic function์œผ๋กœ ํ‰๊ฐ€๊ฐ€ ๋˜๋ฉฐ ๋ชจ๋“  ๋ณ€์ˆ˜์˜ ๊ฐ’์ด ํ•ด๋‹น ๋ณ€์ˆ˜์— ๊ฐ€ํ•ด์ง„ ๋ชจ๋“  constraint๋ฅผ ์ถฉ์กฑํ•˜๋ฉด ๋ฌธ์ œ..
  • Published on
    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Adverserial Search and Game Playing

    ์ธ๊ณต์ง€๋Šฅ๊ฐœ๋ก  | Adverserial Search and Game Playing

    ์ด์ „๊ณผ ๋‹ค๋ฅด๊ฒŒ, ํ•œ์ •๋œ ํ™˜๊ฒฝ์—์„œ 1๊ฐœ์˜ Agent๊ฐ€ ๋ชฉํ‘œ๋ฅผ ํ–ฅํ•ด ์ˆ˜ํ–‰ํ–ˆ ๊ฒƒ๊ณผ ๋ฐ˜๋ฉด, ์ด๋ฒˆ ์‹œ๊ฐ„์— ์•Œ์•„๋ณผ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์€ 2๊ฐœ์˜ Agent๊ฐ€ ๋Œ€๋ฆฝํ•˜์—ฌ ํ•œ์ •๋œ ์ž์›์„ ์ฐจ์ง€ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ์ƒ๋Œ€์˜ ์ƒํƒœ๋ฅผ ์˜ˆ์ธกํ•จ์œผ๋กœ์จ ์ž์‹ ์˜ action์„ ๊ฒฐ์ •ํ•˜๊ณ  ๋ฒˆ๊ฐˆ์•„๊ฐ€๋ฉฐ(turn-taking) ์™„์ „์ด ๊ด€์ธก์ด ๊ฐ€๋Šฅํ•œ ์ƒํƒœ(perfect information)์—์„œ zero-...